ABDULLAH GUL UNIVERSITY GRADUATE SCHOOL OF ENGINEERING & SCIENCE BIOENGINEERING DEPARTMENT COURSE DESCRIPTION AND SYLLABUS

N/A

Course Name	CODE	SEMESTER	T+L Hour	CREDIT	ECST
FUNDAMENTALS OF BIOMEMS	ECE 641	Fall-Spring	3+0	3	7,5

Prerequisite Courses

Course Type	Selective
Course Language	English
Course Coordinator	Associate Prof. Kutay İçöz
Lecturers	Associate Prof. Kutay İçöz
Course Assistants	N/A
Course Objectives	Learning the fundamentals of materials and fabrication methods of bio micro/nano electromechanical devices. Reviewing recent literature and application of the devices to biology and medicine.
Learning Outcomes	 Learning the fundamentals of BioMEMS. Learning the fundamentals of materials used in BioMEMS. Learning the fabrication methods of BioMEMS. Detailed study of the surface chemistry and functionalization methods. Learning the fundamentals of BioMEMS based biosensors. Learning the fundamentals of microfluidics. Gaining the ability to understand the devices developed for cells and biomolecules.
Course Content	 Nanotechnology and its applications Materials and specifications Fabrication Process: Etching, Deposition and patterning Surface properties Nanotechnology based transduction Microfluidics Micro/nano biosensors Standard laboratory methods Micro/nano cantilevers Biochips.

WEEKLY SUBJECTS AND RELATED PRELIMINARY PAGES					
Week Subjects Preliminary					
1	BioMEMS and its applications, market value, advantages of miniaturization	The relevant articles from the literature			
2	Materials: Silicon, silicon nitride, silicon oxide, metals, polymers and their specifications Nano-Fabrication techniques: Lithography and light sensitive polymers	The relevant articles from the literature			
3	Micro-Fabrication techniques: Deposition methods (spin coating, e-beam evaporation, chemical vapor deposition, sol-gel method), etching methods (wet and dry etching) deep reactive ion etching	The relevant articles from the literature			
4	Surface Props developed with nanotechnology: Chemical and biological receptors, surface coating and surface chemistry	The relevant articles from the literature			
5	Surface Props developed with nanotechnology: Micro patterning methods	The relevant articles from the literature			
6	Midterm				
7	Microfluidic Devices and nanotechnology: Advantages. Viscosity, Reynold's Number, Laminar Flow, Flow profile, microchannel resistance, flow in pores media, diffusion, surface contact angle, wetting, electrophoresis, dielectrophoresis, electro osmosis	The relevant articles from the literature			

8	Biosensors: standard laboratory analysis techniques (ELISA, flow cytometry) new generation techniques (QCM, SPR), micro/nano analysis techniques, micro cantilevers, operation modes surface stress, frequency modes. Detection mechanism and comparison of cantilevers.	The relevant articles from the literature
9	Biosensors: Interferometry and interferometric cantilevers and application areas, weight measurement of individual micro nano particles, enhancement of frequency mode operation	The relevant articles from the literature
10	BioMEMS for Cells: Definition and application areas, Single cell measurement techniques	The relevant articles from the literature
11	Midterm	
12	BioMEMS and medical applications 1	The relevant articles from the literature
13	BioMEMS and medical applications 2	The relevant articles from the literature
14	BioMEMS and medical applications 3	The relevant articles from the literature
15	BioMEMS and medical applications 4	The relevant articles from the literature
16	Final Exam	

RESOURCES

 Course Notes
 Lecture Slides

 Other Resources
 Course Textbook: "Introduction to BioMEMS" by Albert Folch.

MATERIAL SHARING				
Documents	Lecture notes, slides			
Homework	Students will be given one homework each week			
Exams	2 Midterms and 1 Final Exam			

RATING SYSTEM					
SEMESTER WORKS	NUMBER	CONTRIBUTION			
Midterm	2	40			
Homework	10	20			
TOTAL	10	10			
Success Rate of Semester		70			
Success Rate of Final		70			
TOTAL	1	30			

Course Category	
Basic Sciences and Mathematics	%50
Engineering Sciences	%50
Social Sciences	%0

тн	THE RELATIONSHIP BETWEEN THE LEARNING OUTCOMES AND PROGRAM COMPETENCE						
No	o Program Outcomes		ont eve		ibution		
			2	3	4 5		
1	The skills of using mathematics, science and engineering information in advanced research,				х		
2	The skills of analysing, designing and/or implementing an original system that will be able to solve an engineering problem,				х		
3	The skills of using the required software, hardware and modern measurement equipments in their field of research				Х		
4	The skills of planning independent research and implementing in detail,				Х		
5	The skills of following literature, listening to and making technical presentation, writing a paper in academic level,			Х			

ĺ	6	The skills of innovative and interrogative thinking and finding original solutions		Х	

*From 1 to 5, it increasingly goes.

ECTS / WORK-LOAD TABLE						
Activities	Activities	Duration (Hour)	Total (Work-Load)			
Course Duration (Including exam week: 16x total course hour)	16	3	48			
Out of Class Exercise Time (Pre-study, reinforcement)	16	8	128			
Searching on Internet, library study	16	3	48			
Presentation	5	3	15			
Homework	10	3	30			
Midterms	2	15	30			
Final	1	15	15			
Total Work-Load			314			
Total Work-Load / 30			314/30			
Course ECTS Credit			7,5			